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Introduction to hematopoiesis
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Motivation

The detailed regulatory mechanisms for fate determination of HSCs are still
unravelled
The effect of possible protein heterodimers and/or synergistic effects in
genetic regulation have not been discussed in most mathematical models.
A key challenge in current inference methods is the large number of unknown
parameters compared with the relatively small amount of data.
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Objectives

1 A general approach by combining both the top-down approach (for reducing
the complexity of the network structure) and bottom-up approach (for derive
the detailed dynamic property).

2 Protein dimers and cooperative binding (PDTCBs) are considered into our
proposed mathematical model.
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Background

Microarray dataset GSE49991 from NCBI GEO database.
1 Data of gene expression levels of differentiation into erythrocyte and

neutrophil respectively
2 Data of 3 representative groups at 29 time points over a week after

differentiation started.
3 Based on Go enrichment analysis and literature, the following eleven genes

have been choosen into our study:

x = {Gata1,Gata2,Runx1, Spfi1,Cbfa2t3,

Ets1,Notch1,Tal1, Ldb1,Gfi1b,Gfi1}.
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Top-down approach: probabilistic graphical model

According to the Gaussian graphical model, we proposed the Extended Forward
Search Algorithm to infer the topological structure of regulatory networks that
includes both genes and PDTCBs. In this work it is assumed that a system
includes genes {g1, . . . , gm} with expression levels xij for gene gi at time point j .
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Extended Forward Search Algorithm

We want to construct the regulatory network with m genes and n PDTCBs
(m = 11, n = 66 in our case). Based on the expression levels of each genes, we
calculate the following matrix:

1 A: covariance matrix with m-dimension of m genes.
2 B: covariance matrix from m genes to n PDTCBs which is a m × n matrix.
3 C : covariance matrix with n-dimension of n PDTCBs.

Moreover, we do not study the dynamics of PDTCBs and the regulation from
single gene to PTDCBs due to lack of biological evidences.

M =

[
A B
B′ C

]
(1)
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Extended Forward Search Algorithm I

Algorithm:
1 An initial empty graph (matrix) G is built by the N-dimensional identity

matrix (N = m + n).

G =

[
G1 G2
G3 G4

]
(2)

2 Substitute all covariance values from the diagonal positions of sub-matrix A
into the corresponding positions of sub-matrix G1, then, use the Iterative
Maximum Likelihood Estimates Algorithm to compute the new covariance
matrix.

3 Add an undirected edge E 1
ij into G1. Then, compute a new covariance

matrix. Based on the deviance difference between the new covariance matrix
and that before addition, test and record the significance of the added edge
E 1
ij , then remove it from G1.

4 Repeat the computation in Step 3 for all possible undirected edges. Add the
edge with the smallest p-value into the sub-graph G1 permanently.
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Extended Forward Search Algorithm II

5 Go back to step 3, add the second edge in the updated sub-graph G1.
Repeat the computation in steps 3 and 4 until the smallest p-value of an
added edge is larger than the cutoff p-value.

6 Based on the last updated undirected graph G1, the graph orientation rules
are applied to transform the undirected graph into a directed acyclic graph
(DAG).

7 Add an undirected edge E 2
ij between the i th gene and the j th PDTCB into the

latest graph G . Then, compute a new covariance matrix. Repeat the
computation in steps 3 to 5 with an undirected edge E 2

ij .
8 The last updated sub-graph G1 and G3 with m1 and n1 directed edges,

denoted as As and B′
s , is the predicted directed regulatory network among m

genes and from n PDTCBs to m genes, respectively. The result matrix is
given as follows,

Gs =

[
As
B′

s

]
. (3)
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Bottom-up approach: mathematical model

A number of mathematical formalisms have been proposed to describe the
dynamical interactions between different genes in the network, such as the models
with linear functions,

Fi (t, x) =
n∑

j=1,j 6=i

aijxj − kixi (4)

or the models with non-linear functions,

Fi (t, x) =
∑n

j=1 aijxj

1+
∑n

j=1 bijxj
− kixi . (5)
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Bottom-up approach: mathematical model I

We proposed the following model by applying second truncated Taylor series
approximation for the non-linear model (5)

Fi (t, x) =
m∑

j=1,j 6=i

αi
jxj +

∑
1≤j<k≤n

βi
jkxjxk − kixi (6)

xi : Concentration of TF of single gene.
xixj : Concentration of PDTCBs.
ki : self-degradation rate of gene xi .
αi (βi ) : the corresponding coefficient of the target gene xi .

Interpretation of corresponding coefficient:
If αi

j (β
i
jk) is positive/nagetive, it means that the gene xj (xjxk dimer or

cooperative binding) will active/suppress the expression of gene xi .
If the αi

j (β
i
jk) is zero, it means that there is no regulatory relationship exists.
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Bottom-up approach: mathematical model II

Assumptions for the mathematical model:
1 The regulations from different genes to a particular gene are additive.

Similarly, the regulations from PDTCBs to a particular gene are also additive.
2 αi

j is the regulation strength from the j-th gene to the i-th gene.

3 βi
jk consists of the regulation strength from the PDTCB {xj − xk} to the i-th

gene and equilibrium constant in the chemical reaction.
4 The auto-regulation is not considered, namely αi

i = 0, to avoid confusion
between auto-regulation term αi

ixi and degradation term kixi .
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Parameter inference I

In our case, we have 11 genes and 66 PDTCBs.

Full connection network: 858 unknown parameters in our model for both two
differentiation pathways.

After EFSA: 103 unknown parameters (92 directed edges and 11 self-degradation
terms) for the erythroid differentiation and 91 unknown parameters (80 directed
edges and 11 self-degradation terms) for the neutrophil differentiation.
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Parameter inference II

Estimating by simple Genetic Algorithm.

Setup:
1 1000 generations and 300 individuals per generation.
2 Initial rate constants, (αi

j , β
i
jk , ki ), are uniformly distributed within

[Wmin,Wmax ].
3 Set 200 different random seeds for parameter estimation (Different random

seed cause different final estimate of rate constants.)
4 Simulation error is calculated by

E =

√√√√ m∑
i=1

M∑
j=1

(xi (tj)− x∗i (tj))
2. (7)

We selected the top ten sets with the minimal estimated errors for further analysis
and comparison
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Robustness analysis

In this perturbation test, the perturbed parameter is generated by

mi = mi × (1+ µ× ε), (8)

where ε ∼ N(0, 1) and µ is the variation controlling parameter.
Measurement for the robustness property:

E (k) =

√√√√ m∑
i=1

M∑
j=1

(x
(k)
ij (p)− x

(k)
ij )2 (9)

Robust average:

RA =
1
N

N∑
k=1

E (k), (10)

Robust standard deviation:

RSTD =

√√√√ 1
N − 1

N∑
k=1

(E (k) − RA)2 (11)
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Reduction of Network Model - Edge Deletion

Next, we also test the possibility to delete the potential insignificant edges from
our predicted regulatory networks.

1 Test the deletion of regulations from PDTCBs to genes.
2 Test the deletion of regulations between different genes

Criteria: Remove one specific edge permanently if the corresponding new system
has the minimal change in simulation error and robustness property.
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Inferred regulatory network for the erythroid differentiation
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Inferred regulatory network for the neutrophil differentiation
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Simulation result of the regulatory network for erythroid
differentiation

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

E
x

p
re

s
s

io
n

 l
e

v
e

l 
o

f 
G

a
ta

1

0 100 120 140 160

Time

20 40 60 80 0 100 120 140 160

Time

20 40 60 80

0 100 120 140 160

Time

20 40 60 80 0 100 120 140 160

Time

20 40 60 80

0.80

0.85

0.90

0.95

1.00

1.05

1.10

E
x

p
re

s
s

io
n

 l
e

v
e

l 
o

f 
P

U
.1

E
x

p
re

s
s

io
n

 l
e

v
e

l 
o

f 
E

ts
1

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

E
x

p
re

s
s

io
n

 l
e

v
e

l 
o

f 
T

a
l1

A. B.

C. D.

Figure: Red dash line: microarray data; Blue solid line: simulation of the regulatory
network.
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Simulation result of the regulatory network for neutrophil
differentiation
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Figure: Red dash line: microarray data; Blue solid line: simulation of the regulatory
network.
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Potential issue

We need to consider the following issue in future research:
1 Improve the mathematical model to fit the gene expression data.
2 Our probabilistic graphical model only capture the linear relationship between

two different components.
3 We ignored the effect of upstream regulatory factors and different binding

sites on the DNA sequence.
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Background

A multistable system is a dynamic system with multiple stable states.
Multistability is a common dynamic behaviour in the biological system. For
example,

biochemical reactions
cell signalling systems
genetic regulatory networks (GRN)
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Motivation

Although much progress has been made to describe the stability in the cells’
developmental processes, constructing a multistable system with mathematical
modellings to describe its mechanism is still a major challenge. We found that
most of the studies are still based on bistability. It is still hard to formalize
multistability mathematically without high cooperativity coefficient within the
biological system.
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Formulation of the embeddedness I

For a regulatory network with n genes, the expression level of the i-th gene at
time t is denoted as xi (t). We can use the following a set of n-coupled ordinary
differential equations (ODE) to describe the dynamics of the network

dX
dt

= F (X ,Θ, t) (12)

where X = (X1,X2, · · · ,Xn) ∈ {R+}n denotes the vector of expression levels of n
genes in the n-dimensional non-negative real space, F (x ,Θ, t) is the non-linear
vector field and Θ ∈ {R+}s is the parameter space of s parameters.
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Formulation of the embeddedness II

We firstly consider the following two systems with bistability,

System 1:
dXi

dt
= Fi (X1, · · · ,Xn,Xn+1, · · · ,Xn+N ,Θ1, t) for i = 1, · · · , n + N.

(13)

System 2:
dYj

dt
= Gj(Y1,Y2, · · · ,Ym,Θ2, t) for j = 1, 2, · · · ,m. (14)

Then, we consider the following embeddedness

Xn+k = Hk(Y1,Y2, · · · ,Ym) and W = (X1,X2, · · · ,Xn,Y1,Y2, · · · ,Ym). (15)
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Formulation of the embeddedness III

Thus, we can obtain a embedded system with the parameter space
Θ∗ = Θ1 ∪Θ2, which is defined as

dW
dt

= F (W ,Θ∗, t). (16)

This embedded system consists of two components:

C1:
dXi

dt
= Fi (X1, · · · ,Xn,Hk(Y1,Y2, · · · ,Ym),Θ

∗, t). (17)

C2:
dYj

dt
= Rj(X1, · · · ,Xn,Y1,Y2, · · · ,Ym,Θ

∗, t). (18)

where i = 1, · · · , n, k = 1, · · · ,N and j = 1, · · · ,m.
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Verification I

To verify whether the framework can realise the tristability, we applied our
proposed method to the two bistable toggle switch modules. The first module,
named as Z − U, is modelled by the following equations with parameter space
Θ1 = {a = 0.2, b = 4, c = 3}, given by

dz

dt
= F1(z , u,Θ1, t) = 0.2+

4
1+ u3 − z ,

du

dt
= F2(z , u,Θ1, t) = 0.2+

4
1+ z3 − u.

(19)

The second, named as X − Y , module satisfies the same model with the same
parameter space.

dx

dt
= G1(x , y ,Θ1, t) = 0.2+

4
1+ y3 − x ,

dy

dt
= G2(x , y ,Θ1, t) = 0.2+

4
1+ x3 − y .

(20)
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Verification II

Let consider the u = H(x , y) = x + y , W = (z , x , y) and Θ∗ = Θ1. Then the
non-linear vector fields G1,2(x , y ,Θ1, t) are transformed to new non-linear vector
fields R1,2(x , y , z ,Θ1, t), respectively, which include both genes x , y and z from
two sub-systems with the negative regulations from gene z to genes x and y .

dx

dt
= R1(x , y , z ,Θ1, t) = 0.2+

4
(1+ y3)(1+ z3)

− x ,

dy

dt
= Rw (x , y , z ,Θ1, t) = 0.2+

4
(1+ x3)(1+ z3)

− y ,

dz

dt
= F1(z , u = x + y ,Θ1, t) = 0.2+

4
1+ (x + y)3

− z .

(21)
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Verification III
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Figure: Realization of tristability by embedding two bistable sub-systems. (A) The
phase plane of the toggle switch sub-system (19) with bistability (a and b: stable steady
states, c: saddle state). (B) The 3D phase portrait of the embedded system (21) with
tristability (Three red points: stable steady states; two black points: saddle states)
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Embedding method in HSC genetic regulatory network I

GATA2

GATA2 decreasing

GATA1 and PU.1 increasing

GATA1high, PU.1 low

GATA1low, PU.1 high

Figure: Brief flowchart for differentiation of HSCs to MEPs and GMPs, respectively.
Created with BioRender.com.
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Embedding method in HSC genetic regulatory network II

Z - U sub-system

State

   Z

State

   U

Saddle

 State

State

   Y

State

   X

Saddle

 State

      X -Y 
sub-system

Figure: The illustrative diagram of embeddedness: The principle of embeddedness: Z -U
module is the first bistable sub-system. Once this module crosses the saddle point from
state Z to state U, it enters the X -Y sub-system that has two stable steady states X
and Y , reaching either state X or state Y via the imaginary state U.
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Modelling of two-nodes GRNs I

X Y

Z U

Formulation of Z -U sub-system and X -Y sub-system
dz

dt
= F1(z , u,Θ1, t) =

a1z

1+ b1z

1
1+ b2u

− k1z ,

du

dt
= F2(z , u,Θ1, t) =

c1u

1+ d1u

1
1+ d2z

− k2u.

(22)

dx

dt
= G1(x , y ,Θ2, t) =

α1x

1+ β1x

1
1+ β2y

− k3x ,

dy

dt
= G2(x , y ,Θ2, t) =

γ1y

1+ σ1y

1
1+ σ2x

− k4y .

(23)
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Modelling of two-nodes GRNs II

Theorem 1
For the X -Y system, there are at most five sets of non-negative equilibrium points
exist. Three equilibrium states are (0, 0), (xe , 0) and (0, ye), where xe =

α1−k3
k3β1

and ye =
γ1−k4
k4σ1

for α1 > k3 and γ1 > k4. The other two possible equilibrium
states are denoted as (x∗1 , y

∗
1 ) and (x∗2 , y

∗
2 ), where x∗1 and x∗2 are the positive real

solutions of the following equation:

Am2 + Bm + C = 0, (24)

if − BA > 0, CA > 0 and B2 − 4AC ≥ 0. Where
m = β1x ,A = A1B1 − B1,B = A1 − B1 − 1+ A1B1 − A1B2 + A2B1 and
C = A1 + A2 − 1− A1B2. In addition, A1 = β2

σ1
,A2 = α1

k3
,B1 = σ2

β1
and B2 = γ1

k4
.

Furthermore, to have the positive value of y∗1 and y∗2 , there is one more condition:

x∗1,2 <
A2 − 1
β1

or x∗1,2 <
B2 − 1
σ2

. (25)
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Modelling of two-nodes GRNs III

Theorem 2
The X -Y system has three equilibrium states: (0, 0), (xe , 0) and (0, ye).

1 The equilibrium state (0, 0) is unstable if α1 > k3 and γ1 > k4.
2 The equilibrium state (xe , 0) is stable if γ1

1+σ2xe
< k4.

3 The equilibrium state (0, ye) is stable if α1
1+β2ye

< k3.

Theorem 3
The positive equilibrium states (x∗1 , y

∗
1 ) and (x∗2 , y

∗
2 ) are stable if the following

condition is satisfied.

β1σ1ηyξx − β2σ2θxρy > 0. (26)

where θx = 1+ β1x , ηy = 1+ β2y , ρy = 1+ σ1y and ξx = 1+ σ2x .
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The two-nodes GRN - GATA Switching I

To study the cell fate commitment of HSCs, we begin with the GATA-switching,
which is a main driver of hematopoiesis. During the process of GATA-switching,
the displacement of GATA2 and binding of GATA1 at the same cis-element will
lead cells to leave the HSCs state. Then, after unbinding of GATA2, the
dynamical behaviours of GATA1-PU.1 will decide the final cell fate.
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The two-nodes GRN - GATA Switching II

GATA Switching
Assume the GATA switching happens over a time interval [t1, t2], we introduce
the extra term k∗, where k∗ = k∗0 > 0 for t ∈ [t1, t2], which is the displacement
rate of GATA2 protein at the binding side during GATA-switching process.
Otherwise, k∗ = 0.

dz

dt
=

a1z

1+ b1z

1
1+ b2u

− k1z − k∗z ,

du

dt
=

c1u

1+ d1u

1
1+ d2z

− k2u + ψk∗z ,

(27)

where the additional term of ψ denotes the synthesis rate constant of GATA1.
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The two-nodes GRN - GATA Switching III
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Figure: Simulations of GATA-switching of the deterministic model (27). Left panel: An
unsuccessful switching with small value of k∗

0 due to the displacement of GATA2 is not
enough for cells leave the HSCs state (Z state); Right panel: A successful switching with
the enough displacement of GATA2 by using large value of k∗

0 . Cells leave the HSCs
state and enter the U state.
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The two-nodes GRN - GATA1-PU.1 Module I

While the expression level of GATA2 decreasing, the system approaches state U
and triggers the X -Y system. This system also determines the final stable state of
the whole embedded system. To determine this system, we simulated based on

1 Single-cell data from the latest biological experiment results.
2 Approximate Bayesian computational rejection-sampling algorithm, where the

distance function is defined as

ρ(X,X∗) =
m∑
i=1

[|xi − x∗i |+ |yi − y∗i |], (28)

where (xi , yi ) and (x∗i , y
∗
i ) are the observed data and simulated data of the

model at time point ti for genes (X ,Y ), respectively.
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The two-nodes GRN - GATA1-PU.1 Module II
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Figure: Phase plane of the GATA1-PU.1 module shows the bistable property of the
proposed model, where a and b are stable steady states
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Modelling of the three-nodes embedded GRN I

Let consider the u = H(x , y) = µx + δy , where µ and δ are two positive control
parameters.

X Y

Z

State U
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Modelling of the three-nodes embedded GRN II

Formulation of the embedded X -Y -Z system
dx

dt
=

α1x

1+ β1x

1
1+ β2y

1
1+ d2z

− k3x ,

dy

dt
=

γ1y

1+ σ1y

1
1+ σ2x

1
1+ d2z

− k4y ,

dz

dt
=

a1z

1+ b1z

1
1+ b2(µx + δy)

− k1z .

(29)

Theorem 4
If (xe , 0) and (0, ye) are the equilibrium states of X -Y system and (ze , 0) is a
equilibrium state of Z -U system, where xe =

α1−k3
k3β1

, ye = γ1−k4
k4σ1

and ze =
a1−k1
k1b1

.
Then (xe , 0, 0), (0, ye , 0) and (0, 0, ze) are three equilibrium states of system.
Moreover, if (x∗1 , y

∗
1 ) and (x∗2 , y

∗
2 ) are two positive equilibrium states of X -Y

system as stated in Theorem 1, then (x∗1 , y
∗
1 , 0) and (x∗2 , y

∗
2 , 0) are still two

equilibrium states of X -Y -Z system.
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Modelling of the three-nodes embedded GRN III

Theorem 5
If (xe , 0) and (0, ye) are both stable states of X -Y system and (ze , 0) is a stable
state of Z -U system.

1 The equilibrium state (xe , 0, 0) is stable if a1
1+b2xe

< k1.
2 The equilibrium state (0, ye , 0) is stable if a1

1+b2ye
< k1.

3 The equilibrium state (0, 0, ze) is stable if α1
1+d2ze

< k3 and γ1
1+d2ze

< k4.

Theorem 6
Suppose (x∗, y∗) is a stable state of X -Y system, then the equilibrium state
(x∗, y∗, 0) is also a stable state of the X -Y -Z system if

a1

1+ b2(x∗ + y∗)
< k1 (30)
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The embedded three-nodes GRN with GATA switching I

To realise the GATA-switching, the system is updated as the follows

The three-nodes GRN with GATA Switching
dx

dt
=

α1x

1+ β1x

1
1+ β2y

1
1+ d2z

− k3x + ψk∗z ,

dy

dt
=

γ1y

1+ σ1y

1
1+ σ2x

1
1+ d2z

− k4y ,

dz

dt
=

a1z

1+ b1z

1
1+ b2(µx + δy)

− k1z − k∗z .

(31)
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The embedded three-nodes GRN with GATA switching II

Figure: The 3D phase portrait of the embedded system. Based on the experimental
data, the proposed model successfully realise the tristability properties, with the same
parameter values. Red points: stable steady states; Black points: saddle states.
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The embedded three-nodes GRN with GATA switching III

In fact, experimental studies suggest that GATA2 moderately simulates the
expression of gene GATA1. Thus, we make a modification to model (31) by
adding the term d∗z in the first equation to represent the weak positive regulation
from GATA2 to GATA1. In addition, to avoid zero basal gene expression levels, we
also add a constant to each equation of the proposed model.

Modified three-nodes GRN with GATA switching
dx

dt
=
α0 + α1x

1+ β1x

1
1+ β2y

1+ d∗z

1+ d2z
− k3x + ψk∗z ,

dy

dt
=
γ0 + γ1y

1+ σ1y

1
1+ σ2x

1
1+ d2z

− k4y ,

dz

dt
=

a0 + a1z

1+ b1z

1
1+ b2(x + y)

− k1z − k∗z .

(32)
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The embedded three-nodes GRN with GATA switching IV

Figure: The 3D phase portrait of the modified embedded system. Red points: stable
steady states; Black points: saddle states.
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Stochastic dynamics I

Deterministic model always fail to describe the heterogeneity in the mechanism of
cell fate commitment. To solve this issue, we proposed the following stochastic
differential equations (SDE) model to describe the noise during the developmental
process, given by
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Stochastic dynamics II

Stochastic dynamics

dX (t) =

[
α0 + α1X (t)

1+ β1X (t)

1
1+ β2Y (t)

1
1+ d2Z (t)

− k3X (t) + ψk∗Z (t)

]
dt

+ ω1[k3X (t) + ψk∗Z (t)]dW 1
t ,

dY (t) =

[
(
γ0 + γ1Y (t)

1+ σ1Y (t)

1
1+ σ2X (t)

1
1+ d2Z (t)

− k4Y (t)

]
dt

+ ω2k4Y (t)dW 2
t ,

dZ (t) =

[
(
a0 + a1Z (t)

1+ b1Z (t)

1
1+ b2(µX (t) + δY (t))

− k1Z (t)− k∗Z (t)

]
dt

+ ω3(k1 + k∗)Z (t)dW 3
t .

(33)
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Stochastic dynamics III
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Stochastic dynamics IV

Stochastic simulations shows four stable states that correspond to the
experimentally observed four different states. (A) Simulation of unsuccessful
GATA switching which makes the cell stays at the HSCs state. (B) Simulation of
unsuccessful GATA switching but the cell enters the state with low expression of
all three genes. (C) Simulation of successful switching which leads to the GMP
state with high expression levels of PU.1. (D) Simulation of successful switching
which leads to the MEP state with high expression levels of GATA1.
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Stochastic dynamics V
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Stochastic dynamics VI

Distributions of different cell types derived from stochastic simulations. (A)
Frequencies of cells having successful switching for each set of parameters (k∗0 , ψ).
(B) Ratios of GMP cells to MEP cells when the cells have successful switching in
(A) for each set of parameters (k∗0 , ψ). (C) Parameter sets of (k∗0 , ψ) that
generate stochastic simulations with four steady states. (yellow part) or with two
or three states (blue part). (D) Violin plots of the natural log normalised
(expression level per cell + 1) distributions for three genes in different cell states
derived from stochastic simulations with parameters k∗0 = 0.52 and ψ = 0.0002.
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Open questions

1 How to embed more modules with more transcriptional factors to develop
mathematical models with more stable steady states.

2 How to determine the conditions for realizing the multistable properties in
stochastic models with transcriptional bursting.
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Outline

1 Introduction to hematopoiesis

2 Statistical inference for genetic regulatory networks

3 Embedding method for designing multistable system

4 Stochastic modelling for transcriptional bursting
Introduction
Methods

5 Progress to date and future plan
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Motivation

Because of the belief that gene activity should be discontinuous, transcriptional
bursting is a considerable idea within the biological system. Genes are restricted in
their expression ability with very low expression rates in "off" states and highly
expressed with stochastic bursts in "on" states. We aim to develop a stochastic
model to describe transcriptional bursting and also attempt to capture both
intrinsic and extrinsic noise that affects the transcriptional process.
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Objectives

1 How to determine the time length between two bursting processes?
2 How to determine the bursting size for each process?
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Leaky telegraph model

To achieve the multistability with the transcriptional bursting, we decide to
develop the method based on the leaky telegraph model

Figure: Created with Biorender.com
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Next step

1 Use exponential distribution to describe the waiting time for the next bursting
arrival.

2 Use Poisson distribution with constant rate to describe the size for each
bursting process.

3 Use Poisson distribution with varies rate (setup as a function) to describe the
size for each bursting process.
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Outline

1 Introduction to hematopoiesis

2 Statistical inference for genetic regulatory networks

3 Embedding method for designing multistable system

4 Stochastic modelling for transcriptional bursting

5 Progress to date and future plan
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Progress to date

During my 3-year research life, I have attended two academic conferences.
Moreover, I have published one conference paper and one journal paper. I also
submitted another journal paper. The new project is still in progress
Publication:

1 Wu S., Cui T. and Tian T. Mathematical Modelling of Genetic Network for
Regulating the Fate Determination of Hematopoietic Stem Cells, Proceedings
of 2018 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM 2018), 2167-2173, IEEE Press.

2 Wu S., Cui T, Zhang X and Tian T. 2020. A non-linear reverse-engineering
method for inferring genetic regulatory networks. PeerJ 8:e9065

3 Wu S., Zhou T. and Tian T. A robust method for designing multistable
systems by embedding bistable subsystems. (Journal submitted)

Conference:
1 2018 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM 2018). Madrid Spain.
2 2019 CSIAM 1st Annual Conference on Mathematical Life Science.

Guangzhou China.
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Outline of thesis chapters

I prefer to finish the thesis based on my publication. The framework and possible
chapters of my final thesis include but are not limited to:

Chapter 1 - Introduction
Chapter 2 - Inference for genetic regulatory networks (P.S: Based on the
BIBM conference paper and published paper on PeerJ)
Chapter 3 - Embedded method for realisation of tristability (P.S: Based on
the submitted paper)
Chapter 4 - Application of embedded method on the GATA1-GATA2-PU.1
regulatory complex. (P.S: Based on the submitted paper)
Chapter 5 - Stochastic model for transcriptional bursting. (P.S: Based on
my current project)
Chapter 6 - Limitation of study and Open questions
Chapter 7 - Conclusion
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Plan to thesis completion

Jul. 2021:
1 Methods development.
2 Draft the paper.

Aug. 2021 to Sep. 2021:
1 Finalise the current paper and submit to publisher/conference.
2 Draft the thesis and format the contents from the published/submitted

manuscripts.
3 Write the introduction chapter and proof-read the thesis.
4 Submit the thesis for PhD examination.
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Thanks!

Thanks for your time!
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